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Abstract

A primary motivation for reasoning under uncertainty is to derive decisions in
the face of inconclusive evidence. Shafer’s theory of belief functions, which explicitly
represents the underconstrained nature of many reasoning problems, lacks a formal
procedure for making decisions. Clearly, when sufficient information is not available,
no theory can prescribe actions without making additional assumptions. Faced with
this situation, some assumption must be made if a clearly superior choice is to emerge.
In this paper we offer a probabilistic interpretation of a simple assumption that disam-
biguates decision problems represented with belief functions. We prove that it yields
expected values identical to those obtained by a probabilistic analysis that makes the
same assumption. We maintain a strict separation between evidence that carries in-
formation about a situation and assumptions that may be made for disambiguation
of choices. In addition, we show how the decision analysis methodology frequently
employed in probabilistic reasoning can be extended for use with belief functions. This
generalization of decision analysis allows the use of belief functions within the familiar
framework of decision trees.

KEYWORDS: belief functions, decision analysis, decision-making, decision tree, Dempster-
Shafer theory, evidential reasoning, reasoning under uncertainty
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1 Introduction

Decision analysis provides a methodological approach for making decisions. Uncertain states
of nature are represented by probability distributions, and each possible state is assigned a
value or wlilily. The best decision is the one that yields the greatest expected utility. By
enumerating in a decision tree all available choices and assessing the probabilities and utilities
of the states of nature that may result, one can mechanically determine the optimal sequence
of aclions he should take [4, §, 9, 14].

In practice, these simple requirements are Lard to satisfy [3]. Sometimes, reliable es-
timates of the probabilities involved are hard to come by. For example, few statistics are
available for determining the probability of a nuclear reactor core meltdown. Assessing the
utility of many-faceted states of nature is equally challenging. How should one give a unique
value to the anticipated quality of married life? These limitations have hindered the more
widespread application of decision analysis.

Shafer’s theory of belief functions [12, 15, 16, 18] allows one to express partial beliefs
when it is impossible or impractical to assess complete probability distributions confidently.
Using belief functions, one can bound the probabilities of events for which the assignment
of a precise probability would be misleading. The theory provides a facility to express one’s
beliefs only to the degree to which there is supporting evidence, thereby resulting in an
appropriate description of an uncertain event. IFor example, there might be reason to assign
a probability to a reactor malfunction, without saying what the chance is that it may lead
to a core meltdown.

Despite its representational advantages, the theory of belief functions lacks a formal
basis upon which decisions can be made in the face of ambiguity [1]. Computing the ex-
pected utility of a random event that has been represented with belief functions results in
an expected utility interval (EUI). To choose between two actions one must compare their
respective EUIs. If they don’t overlap, the choice is clear. But wlien the EUls overlap, the
decision-maker is confronted with a dilemmma — the available evidence does not support ei-
ther choice. Ideally, one should collect more information until the intervals no longer overlap
and the choice becomes clear. However, sometimes one is forced to choose without benefit
of additional information. What should be done?

In this situation there is no recourse except to make an assumption to eliminate the am-
biguity. Various authors have expressed preference for different assumptions (such as renor-
malization, generalized insufficient reason (2, 20], minimax [22] and optimism /pessimism {6]).
More elaborate schemes have been suggested, but they also amount to the introduction of
unfounded assumptions [11, 13, 23]. Here we advocate the interpolation of a point-valued
utility within the EUI. We make no claim that it leads to superior decisions, but do claim
that it is no less viable than the alternative assumptions. We show that it gives the same
expected utility (and hence leads to the same decisions) as would be obtained by assuming
that there is some probability that ambiguity will be resolved in one’s favor.

We further show how decision analysis can be generalized to accomodate a belief function
representation of uncertainty. This involves two modifications: allowing an interval as the



utility of a state or set of states, and allowing a belief function in place of a probability
distribution. The result is a complete decision analysis procedure compatible with either
probabilistic or belief function representations of uncertainty.

We should point out that decision theory (and its associated utility theory) is not the
only approach for making decisions under uncertainty. Ior example, Lesh has proposed a
model based on an ignorance-preference coefficient that is empirically derived [10]. Shafer
has advocated a “constructive” decision theory which seeks support for actions that achieve
goals [17]. Loui et. al. suggest representing beliefs not by one distribution, but by a se-
quence of progressively more decisive distributions [11]. In this paper we are concerned with
providing for the use of belief functions within the general framework of decision analysis.

It is worth noting that none of the material described in this paper depends on the use of
Dempster’s rule, which is commonly used in Shafer’s theory to combine independent bodies
of evidence [16]. The computation of expected utility interval, and the procedure for using
EUIs in decision analysis, only requires that a belief function representation of the problem
be available. Dempster’s rule could be used to construct that belief function, but it is not
required for decision analysis.

In the sections that follow we develop the theory and illustrate its use with simple ex-
amples. In Section 2 we derive the expected utility interval that results from the use of
belief functions. We then show how making an assumption about the probability of nature’s
cooperation leads to the same expected utility as interpolation within the EUI. In Section 3,
this result is used to generalize decision analysis and is illustrated within a decision problem
concerning whether or not to drill for cil. We conclude with a discussion of the benefits and
limitations of our approach, and compare its use with other approaches to decision-making
under uncertainty.

2 Expected Value

Decision analysis provides a methodological approach for making decisions. The crux of the
method 1s that one should clicose the action that will maximize the expected utility. In this
section we review the computation of expected utility using a probabilistic representation of
a simple example and show how a belief function gives rise to a range of expected utilities.
We then show how a simple assumption about the inclination of nature leads to a means for
choosing a single-point expected utility for belief functions.

2.1 Expected value using probabilities

Example — Carnival Wheel #1 A familiar game of chance is the carnival wleel
pictured in Pigure 1. This wheel is divided into 10 equal sectors, each of which is
labeled with a dollar amount as shown. For a $6.00 fee, the player gets to spin the
wheel and receives the amount shown in the sector that stops at the top. Should we
be willing to play?

[S]



Figure 1: Carnival Wheel #1

The analysis of this problem lends itself readily to a probabilistic representation. From
inspection of the wheel (assuming each sector really is equally likely), we can construct the
following probability distribution:

p(8l) = 0.4
p(85) = 0.3
p(810) = 0.2
p(520) = 0.1

The expected value E(x) is computed from the formula

E(z)= Y o pla) | 1)

TeD

where © is the set of possible outcomes. The expected value of the carnival wheel is $5.90
as shown here:

z plz) =z-plx)

1 0.4 0.4

5 0.3 1.5

10 0.2 2.0

20 01 2.0
E(z)= 590




Figure 2: Carnival Wheel #2

Therefore, we should refuse to play, because the expected value of playing the game is less
than the $6.00 cost of playing.! Let us now modify the problem slightly in order to motivate
a belief function approach to the problem.

2.2 Expected value intervals

Example — Carnival Wheel #2 Another carnival wheel is divided into 10 equal
sectors, each having §1, 85, $10, or $20 printed on it. However, one of the sectors is
hidden from view. How much are we willing to pay to play this game?

This problem is ideally suited to an analysis using belief functions. In a belief function
representation, a unit of belief is distributed over the space of possible outcomes (commonly
called the frame of discernment). Unlike a probability distribution, which distributes belief
over elements of the outcome space, this distribution (called a mass function) attributes
helief to subsets of the outcome space. Belief attributed to a subset signifies that there
is reason to believe that the outcome will be among the elements of that subset, without
committing to any preference among those elements. Formally, a mass distribution me is a
mapping from subsets of a frame of discernment © into the unit interval:

1'We assume that the monetary value is directly proportional to utility because of the small dollar amounts
involved. We could instead have chosen to work with utilities to account for nonlinearities in one’s preferences
for money.



mg : 2° — [0, 1],

such that

me(¢) =0 and > me(A)=1.
A4;CO
Any subset to which nonzero mass has been attributed is called a focal element. One of the
ramifications of this representation is that the belief in a hypothesis A (4 C ©) is constrained
to lie within an interval [Spt(A), Pls(A)], where

Spi(A) = > me(Ai) ; Pls(A)=1—5pt(~A). (2)

A;CA

These hounds are commmonly referred to as support and plausibility.
The frame of discernment © for Wheel #2 is {$1,$5,510,520}. The mass function for
Wheel #2 is shown below,

m({51}) = 0.4

m({$5}) = 0.2

m({310}) = 0.2

m({520}) = 0.1

m({$1,9$5,810,520}) 0.1,
and its associated belief intervals are
[Spt({S1}), PIs({31})] = [0.4,0.5]
[Spt({85)), PIs({$5))] = [0.2.03]
[Spt({$10}), Pis({510})] = [0.2,0.3]
[Spt({$20}), Pis({$20})] = [0.1,0.2].

Before we can compute the expected value of the wheel represented by this belief function,
we must somehow assess the value of the hidden sector. We know that there is a 0.1 chance
that the hidden sector will be selected, but what value should we attribute to that sector?
If the carnival hawker were allowed to assign a dollar value to that sector, he would surely
have assigned $1. On the other hand if we (or a cooperative friend) were allowed to do so, it
would have been $20. Any other assignment method would result in a value between §1 and
$20, inclustve. Therefore, if we truly do not know what assignment method was used, the
strongest statement that we can malke is that the value of the hidden sector is between §1
and $20. Using interval arithmetic we can apply the expected value formula of Equation 1
to obtain an expected value interval (EVI):



E(z) = [Eu(z), E*(z)] (3)

where?

E(z)= > inf(A;) me(A)

AiCO

E*(z)= ) sup(A:)-moe(A).

AiCO

The expected value interval of Wheel #2 is

E(z) =[0.4(1)+ 0.2(5) + 0.2(10) + 0.1(20) + 0.1(1),
0.4(1) + 0.2(5) + 0.2(10) + 0.1(20) + 0.1(20)]

E(z) = [5.50,7.40] .

2.3 Expected value using belief functions

As many researchers have pointed out, an interval of expected values is not very satisfactory
wlen we have to make a decision. Sometimes it provides all the information necessary to
make a decision, e.g. if the game costs 35 to play, then clearly we should be willing to play
regardless of who gets to assign a value to the hidden sector. Sometimes we can defer making
the cecision until we have collected more evidence, e.g. if we could peek at the hidden sector
and then decide whether or not to play. But the need to make a decision hased on the
currently available information is often inescapable, e.g. should we spin Wheel #2 for a
$6 fee? We will present our methodology for decision-making using belief functions after
pausing to consider a Bayesian analysis of the same situation.

If we are to use the probabilistic definition of expected value from Equation 1, we are
forced to assess probabilities of all possible outcomes. To do this, we must make additional
assumptions before proceeding further. One possible assumption is that all four values
of the hidden sector ($1, §3, $10, $20) are equally likely, and we could evenly distribute
among those four values the 0.1 chance that the hidden sector is chosen. This is an example
of the generalized insufficient reason principle advanced by Dubois and Prade [2] and by
Smets [20]. The resulting computation of expected value with this assumption is shown
below; the expected value is $6.30:

z  plz) = p(=)
1 0.425  0.425
5 0225  1.125

10 0.225  2.250
20 0.125 2.500
E(z)= 6.30

?We use inf(A4;) or sup(4;) to denote the smallest or largest element in the set 4; C ©. © is assumed to
be a set of scalar values [21].



An alternative assumption is that the best estimate of the probability distribulion for the
value of the hidden sector is the same as the known distribution of the visible sectors. Using
this assumption, the result i1s $6.00:

x  ple)  z-p(=)
1 4/9 4/9
5 2/9  10/9
10 2/9  20/9
2 1/9  20/9
E(z)= 6.00

Rather than making one of these assumptions, we may wish to parameterize by an unknown
probability p our belief that either we get to choose the value of the hidden sector or the
carnival hawker does. Let p be the probability that the value assigned to the hidden sector
is the one that we would have assigned, if given the opportunity, so (1 — p) is the probability
that the carnival hawker chose the value of the hidden sector. That is,

p(hidden sector is Jabeled $20) = p
p(hidden sector is labeled §1) = 1—p.

The expected value of Wheel #2 can then be recomputed using probabilities and Equation 1
as illustrated here:

I p(z) z - p(x)
1 04+401(1—p) 05-01p
5 0.2 1.0
10 0.2 2.0
20 0.1+0.1p 2.0 +2p
| E(z) = 5.50 +1.90p

To decide whether to play the game, we need only assess the probability p. For the
carnival wheel it would be wise to allow that the hawker has hidden the value from our view;
thus we might assume that p = 0. So E(z) = 5.50, and we should not be willing to pay
more than $5.50 to spin the wheel.

Example — Carnival Wheel #3 A third caruival wheel is divided into 10 equal
sectors, each having 31, $5, $10, or $20 printed on it. This wheel has 5 sectors hidden
from view. However, we do know that none of these sectors is a $20, that the first
hidden sector is either a $5 or a §10, and that the second hidden sector is either a $1
or a $10. How much are we willing to pay to spin Wheel #37

A probabilistic analysis of Wheel #3 requires one to make additional assumptions. Esti-
mating the conditional probability distribution for each hidden sector would provide enough
information to compute the expected value of the wheel. Alternatively, estimating just the
expected value of each hidden sector would suffice as well. However, doing so can be both
tedious and frustrating: tedious because there may be many hidden sectors, and frustrating

7



Figure 3: Carnival Wheel #3

because we're being asked to provide information that, in actuality, we do not have. (If we
knew the conditional probabilities or the expected values, we would have used them in our
original analysis.) What is the minimum information necessary to establish a single expected

value for Wheel #37
The probability, p, that we used to analyze Wheel #2 can be used here as well.

Definition 1
Let p = the probability that ambiguily will be resolved as favorably as possible;
{1 — p) = the probability that ambiguity will be resolved as unfavorably as possible.

Estimating p is sufficient to restrict the expected value of a belief function to a single point.
It is easy to see that the expected value derived from this analysis as p varies from 0 to 1 is
exactly the value obtained by linear interpolation of the EVI that results from using belief
functions. The following derivation shows that this is true in general.

Theorem 1 Given a mass function me defined over a scalar frame © of utilities, and an
estimate of p (the probability that all residual ambiguity will turn out favoradly}, the expected
utility given meg is

B() = Eu(2) + p- (B*(s) - E.(x)). ()

Proof:
Consider a mass function meg defined over a frame of discernment ©. Now consider any focal
element A C O, such that me{A) > 0. Since p is the probability that a cooperative agent



will control which z € A will be selected, and (1 — p) is the probability that an adversary will
be in control, then the probability that 2 will be chosen given that focal element A occurs is

p if © = sup(A)
pe(z|A)= ¢ (1 —p) if z =inf(4)
0 otherwise.

Considering all focal elements in mg, we can construct a probability distribution pe(z) as
follows:

po(z) = Y polz|Ai) - pe(A:)
ACO

palz) = > pme(A) + 3. (1—p) me(4).

A: sup(A)=z A:inf{A)=2

Using Equation 1 we have

E(z) = ) = polz)

ze@

- z( S pme(4) + % (1—p>-me(A))

ze® Arsup(Ad)== A:inf(A)=z
= 5 ( S sup(d)-p-me(A)+ > inf(A)-(1-p) -m@(A)) .
’ 2€@ \A:sup(d)=z Arinf(A)==z

The double summations can be collapsed to a single summation because every A C 0O
has a unique sup(A) € © and a unique inf(A) € O.

E@@) = Y sup(A)-p-mo(A) +inf(4)- (1 = p) - mo(A)

= i@ inf(A)-me(A) +p- A%[sup(fl) —inf(A)] - me(A)

= E.(z)+p- (EXz) - Lu(7)) -

O

The important point of the proof is that the probabilistic analysis provides a meaning-
ful way to choose a distinguished point within an EVI that results from the use of belief
functions. That distinguished point can then be used as the basis for comparison of several
choices when their respective EVIs overlap.

2.4 Discussion

Because of its interval representation of belief, Shafer’s theory poses difficulties for a decision-
maker who uses it. Lesh has proposed a different method for choosing a distinguished point



to use in the ordering of overlapping choices [10]. Lesh makes use of an empirically derived
“ignorance preference coefficient,” 7, that is used to compute the distinguished point called
“expected evidential belief” (EEB):

EEB(A) = Spt(A)J; Pls(A) | (Pls(A) _Qgpt(A))z |

L 4

A choice is made by choosing the action that maximizes the “expected evidential value” (EEV):

EEV = 5. A;- BEB(A;).

A CO

There are some important differences between Lesh’s approach and the present approach
for evidential decision-making. The ignorance preference parameter T can be seen as a
means for interpolating a distinguished value within a belief interval {Spt(A), Pls(A)], while
the cooperation probability, p, is used to interpolate within an interval of expected utilities
[E.(z), E*(z)]. Secondly, Lesh’s parameter v is empirically derived and has no theoretical
underpinning. In contrast, the cooperation parameter p has been explained as a probability
of a comprehensible event—that the residual ambiguity will be favorably resolved. 1t leads
to a simple procedure involving linear interpolation between bounds of expected utility, and
1s derived from probability theory.

The use of a single parameter to choose a value between two extremes is similar in spirit to
the approach taken by Hurwicz with a probabilistic formulation [6]. Hurwicz suggested that
rather than computing the expected utility of a variable for which a probability distribution
is known, one could interpolate a decision index between two extremes by estimating a single
parameter related to the disposition of nature. When this parameter is zero, one obtains
the Wald minimax criterion—the assumption that nature will act as strongly as possible
against the decision-maker [22]. In contrast to the Hurwicz approach in which one ignores
the probability distribution and compules a decision index on the basis of the parameter
only, in our approach the expected utility interval 1s computed, and interpolation between
extremes occurs only within the range of residual ambiguity allowed by the focal elements of
a belief function. Thus our approach is identical to the use of expected utilities when a prob-
ability distribution is available; it is identical to Hurwicz’s approach when there are known
constraints on the distribution; and it combines elements of both when the distribution s a
belief function.

There may be circumstances in which a single parameter is insufficient to capture the
underlying structure of a decision problem. In these cases it would be more appropriate to use
a different probability to represent the attitude of nature for each source of ambiguity. Let
p: be the probability that ambiguity within each focal element A; will be decided favorably,
(VA;)A; € ©. Then we obtain

E(:E) = Z inf(A,-) . m@(A;) + E P [Sup(A{) — inf(A,-)] . m@(A,-) (5)

A;CO A;Coe

in place of Equation 4.

10



3 Decision Analysis

In the preceding section we have defined the concept of an expected utility interval for belief
functions and we have shown that it bounds the expected utility that would be obtlained
with any probability distribution consistent with that belief function. Furthermore, we have
proposed a parameter (the probability that residual ambiguity will be decided in our behalf)
that can be used as the basis for computing a unique expected utility when the available
evidence warrants only bounds on that expected utility. In this section we will show how
the expected utility interval can be used to generalize probabilistic decision analysis.

Decision analysis was first developed as a means by which one could organize and sys-
tematize one’s thinking when confronted with an important and difficult choice [4, 14]. Its
formal basis has made it adaptable as a computational procedure by which computer pro-
grams can choose actions when provided with all relevant information. Simply stated, the
analysis of a decision problem under uncertainty entails the following steps:

o List the viable options available for gathering information, for experimentation, and
for action.

o List the events that may possibly occur.

e Arrange the information you may acquire and the choices you may make in chronolog-
ical order.

* Decide the value to you of the consequences that result from the various courses of
action open to you.

o Judge the chances that any particular uncertain event will occur.

3.1 Decision analysis using probabilities

First we will illustrate the use of decision analysis on a problem that can be represented with
probabilities to acquaint the reader with the method and terminology.

Example -~ Oil Drilling #1 A wildcatter must decide whether or not to drill for
oil. He is uncertain whether the hole will be dry, have a trickle of cil, or be a gusher.
‘Drilling a hole costs $70,000. The payofls for hitting a gusher, a trickle, or a dry hole
are $270,000, $120,000, and $0, respectively. At a cost of $10,000 the wildcatter could
take seismic soundings that would lelp determine the underlying geologic structure.
The soundings will determine whether the terrain has no structure, open structure,
or closed structure. The experts have provided us with the joint probabilities shown
below. We are to determine the optimal strategy for experimentation and action [8].

| State | No struct Open Closed | Marginal |

Dry 0.30 0.15 0.05 0.50
Trickle 0.09 0.12 0.09 0.30
Gusher 0.02 0.08 0.10 0.20
Marginal 0.41 0.35 0.24 1.00

11



In decision analysis, a decision tree is constructed that captures the chronological order
of aclions and events [8, 9]. A square is used to represent a decision to be made. and its
branches are labeled with the alternative choices. A circle is used to represent a chance node,
and its branches are labeled with the conditional probability of each event, given that the
choices and evenls along the path leading to the node have occurred.

To compute Lhe best strategy, the tree 1s evaluated from its leaves toward its root.

¢ The value of a leaf node is the utility of the state of nature it represeuts.

e The value of a chance node is the expected utility of the probabilily distribution rep-
resented by its branches as computed using Equation 1.

e The value of a choice node is the maximum of the utilities of each of its sons. The
best choice for the node is denoted by the branch leading to the son with the greatest
utility. Ties are broken arbitrarily.

This procedure is repeated until the root node has been evaluated. The value of the root
node is the expected utility of the decision problem; the branches corresponding to the
maximal value at eacl choice node give the best sirategy to follow (i.e. choices to make in
each situation).

The evaluated decision tree for the oil drilling example is portrayed in Figure 4. It can
be seen that Lhe expected value is $22,500 and that the best strategy is to take seismic
soundings, to drill for oil if the soundings indicate open or closed structure, and not to drill
if the soundings indicate no structure. -

3.2 Decision analysis using belief functions

To use the decision procedure just described, it must be possible to assess the probabilities
of all uncertain events. That is, the set of branches emanating from each chance node in the
decision tree must depict a probability distribution. In many scenarios, however, estimating
these probability distributions is difficult or impossible, and the decision-maker is forced to
assign probabilities even though he knows they are unreliable. Using belief functions, one
need not estimate any probabilities that are not readily available. The representation better
reflects the evidence at hand, but the decision analysis procedure cannot be used with the
resulting interval representation of belief. In this section we describe a generalization of
decision analysis that accommodates belief functions.

Example — Oil Drilling #2 As in the first oil-drilling example, a wildcatter
must decide whether or not to drill for oil. Iis costs and payoffs are the same as before:
drilling costs §70,000, and the payoffs for hitting a gusher, a trickle, or a dry well are
$270,000, $120,000, and $0, respectively. However, at this site, no seismic soundings
are available. Instead, at a cost of §10,000, the wildcatter can make an electronic test
that is related to the well capacity as shown below. We are to determine the optimal
strategy for experimentation and action.

12



No Drill

20,000 20,000

MNo Seismic Test

w Gusher

-10,000 0.0486

190,000

No Structure

Trickle
0.41 1 | Dri 0.22 (D 40,000
22,500 -10,000 -40,488 o7
0,742 -80,000
0.22 !

Open Structure

Trickle O4D ooon

22,500 22,857

No Drill

Closed Structure

0.24 LT W

77,500

Trickle
0.375

Figure 4: Decision Tree for First Oil-Drilling Example



Prob Test result Capacity {
0.5 red dry

0.2 yellow dry or trickle
0.3 green trickle or gusher

Several issues arise that prevent one from constructing a well-formed decision tree for
* this example. First, consicler the branch of the tree in which the test is conducted and the
result is green (Figure 5). If we drill for oil, then we know we will find either a trickle or a
gusher, but we cannot deterniine the probability of either from the given information. We
are tempted to label the branch with the disjunction (Trickle V Gusher) with probability 1.0.
But what should be the payoff of that branch? All we can say is that the payoff will be either
$40,000 (if a trickle) or $190,000 (if a gusher). Ordinary decision analysis requires a unique
value to be assigned, but we have no basis for computing one. So the first modification
we malie to the construction of decision trees 1s to allow disjunctions of events on branches
emanating from chance nodes, and to allow intervals as the payoffs for leaf nodes. We wiil
discuss later how to evaluate such a tree.

To see the second issue, consider the branch of the tree in which the test is not conducted.
If we drill for oil, there is a chance that we will hit a gusher, a trickle, or a dry well, but
what is the probability distribution? We know only that

p(Dry | Red) = 1.0 p(Red) = 0.5
p(Dry Vv Trickle | Yellow) = 1.0 p(Yellow) = 0.2
p(Trickle vV Gusher | Green) = 1.0 p(Green) = 0.3

There 1s not enough information to use Bayes’ rule to compute the probability distribution
{or the well capacity. Without adding a new assumption at this point, the strongest statement

ithat can be made is
05<  p(Dry)

<0.7
0.0 < p(Trickle) < 0.5
0.0 £ p(Gusher) <0.3.
Using belief functions, this can be represented as
m({Diy}) =

0.5
m({Dry, Trickle}) = 0.2
m({Trickle, Gusher}) = 0.3,

which yields the required belief intervals

[Spt({Dry}), Pls({Dry})] = 10.5,0.7]
(Spt({Trickle}), Pls({Trickle})] = [0.0,0.5]
[Spt({Gusher}), Pls({Gusher})] = [0.0,0.3].

The second modification we make to decision trees is to allow the branches emanating from a
chance node to represent a mass function. The masses must still sum to one, but the events
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No Drifi

{OR ’i’ncglr:3 Gusher} [50,000 200,000]

[-34,000 35,000]

(OB Drv Trickle) _
¥ O[ 70,000 50,000]

[-34,000 35,000]

No Test ~70,000
M ~10,000
Red
6.5 Dry
-10,000 Drilt .0 -80,000
-80,000
Test Na Drill -10,000
Yellow
0.2
[-24,000 60,0001 [-50,000 40,000] Drill {OR Dry Trickle} QE-BO,UDD 40,000]
1.0
[-80,000 40,000]
Mo Drill -10,000
Green
0.3

{OR Trickle Gusher)JkD{.,m’oDD $90,000]

[-10,000 190,0007  Dril ke

(40,000 190,000]

Figure 5: Modified Decision Tree for the Second Oil Drilling Example
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need not be disjoint.? The completed decision tree for Qil Drilling Example #2 is shown in
Figure 5. ) ,
The tools of Section 2 can be used to evaluate a decision tree modified in this manner.

¢ The value of a leaf node is the utility of the state of nature it represents. This may be
a unique value or, in the case of a disjunction of states, an interval of values.

s A chance node represents a belief function. lts value is the expected utility interval
computed with Equation 3 :

E(x) = [E.(x), E~(x)].

¢ A decision node represents a choice of the several branches emanating from it. The
utility of each branch may be a point value or an interval. The value of a decision node
is the expected utility computed using Equation 4 and an estimate of p :

E(x) = Eu(z) + p - (£7(=) = E.(=)) -

The action on the branch that yields the greatest E(z) is chosen. Ties are broken
arbitrarily.

In summary, a decision tree and decision analysis procedure for belief functions have
been described. Two modifications were made to adapt ordinary decision trees: intervals are
allowed where utilities occur; and belief functions are allowed where probability distributions
occur. A unique strategy can be obtained by estimating the probability p. *

3.3 Generalized decision tree examples

Figures 6, 7, and 8§ show the evaluated decision tree for several values of g — each node is
labeled with its expected value or expected value interval. In the cases where the expected
value is an interval, the evidential expected value E(z) is also shown (using the assumed p).
Preferred decisions are highlighted with a black background.

If we opt not to test, then our choice is either to not drill (expected value 0) or to drill
(expected value interval [—34,000 35,000] ). The better choice depends on what value of
p is assumed. As can be seen in the figures, if p = 0.0, then it is better to not drill, but if
p = 0.5 or p = 1.0, then drilling is the better choice. |

If we choose to test and the result is yellow, then our choice is to not drill (expected value
-10,000) or to drill (expected value interval [—80,000 40,000] ). In this case it is better to
not drill if either p = 0.0 or p = 0.5 and to dnll if p = 1.0.

If the test result is red, then one should not drill regardless of p (-10,000 is always better
than -80,000). If the test result is green, then one should always drill (-10,000 is never as
good as the interval [40,000 190,000] ).

3Recall that a probability distribution is an assigniment of belief over mutually exclusive elements of a
set, whereas a mass function is a distribution over possibly overlapping subsets.

4When all utilities are point-valued and all belief functions are true probability distributions, no assump-
tion is required and the strategy will be identical to that prescribed by ordinary decision analysis.
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Bho = 0.0

Red

{OR Gusher Trickle}
0.3

[-34,000 35,000]

-34,000

0.5

[5,000 59,G00)
5,000

Yeliow

-10,000

0.2

[5,000 50,000]

S;0

Green

-10,000

0.3

[40,000 190,0003

40,000

Dry
0.5

Drill

No Orill

[50,000 200,0003
50,000

{OR Dry Trickle) [~70,000 50,000%
0.2

-70,000

-70,000
-10,000
Dry
1.0
~-80,000
-10,000

(OR Dry Trickie)

O -80,000

[-80,000 40,000)]

£-80,000 40,6001
-80,000

1.0

-10,000

-£0,000

£40,60C¢ 190,0001

[40,000 150,000]
40,000

(OR Trickle Gusher)
1.0

40,000

Figure 6: Decision Tree for the Second Oil Drilling Example (assuming p = 0.0).
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No Drill

Bho = 0.5

(OR Gusher Trickle) [56,000 200,000]

0.3 125,000
[-34,000 35,000 oA
500 (OR Dry Trickle} {-70,000 50,000]
0.2 -10,000
. Dry
[-34,000 35,000] )
No Test " 500 0.5 70,000

Red
05
Dry -
-80,000
[5,000 50,000) ’
27,500
~10,000
T
est Yellow
n.2
10,000 {QR Dry Trickle) {~80,000 40,0001
[5,000 5D,000] ? 1.0 -20,000
27,500
£-80,000 40,000]
~20,000
No Drill -10,000
Green
0.3

: (40,000 150,000]
[40,000 190,000] 118,000

115,000

£40,600 150,000]
115,000

Figure 7: Decision Tree for the Second Oil Drilling Example (assuming p = 0.5).
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No Dril}

(OF Gusher Trickle)
0.3

(50,000 200,000}
200,000

[~34,000 35,000]

45,000 (0A.Dry Trickle £-70,000 50,0001
o2 50,000
[-34,03050 55,000) ~70,000
No Tast !

%40 Dril -10,000
Red
05

i Dry -
-10,000 Ll 3 () -80,000
-80,000
[-2,000 60,0001
60,000

No Orill -10,000

fest Yellow
0.2
m {QR Dry Trickie} [-80,000 40,000]
[-9,000 60,000) [-80,000 40,000] 3.0 40,000
€0,000 40,000
[-20,000 40,000]
,000

Mo Drill -10,009
Graen
0.5

m {OR Trickle Gusher) [40,000 150,000]
[40,000 90,0001 1.0 150,000

190,000
[40,000 190,000]
190,000

Figure 8: Decision Tree for the Second Oil Drilling Example (assuming p = 1.0).
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3.4 Comparing two choices

Instead of assuming a value for p first, and calculating the choices that result, one may ask
the reverse question. At what value of p would I change my decision? This can be answered
in general by examining a choice between two states having expected utility intervals.

Theorem 2 Let the expecied utility miervals of {wo choices be us follows:

Choice 1: [Ey.(z), E; ()]
Choice 2: [Ea.(a), E5(x)] .

Assume without loss of generality thal Choice I has the smaller interval, i.e.

(E3(z) — E2.(2)) > (E;(z) — Eru(z)). Then Choice 2 is preferred over Choice 1 iff
Er.(z) = Ep.(2)

F;(v) = Bi(2) + Ba(e) — Banle)

(6)

p >

Proof:
Using Theorem 1 and solving for p gives the point p. at which one is indifferent hetween
Choice 1 and Choice 2:

Ey(z) = Eya(z) + - (Bl (z) — Eau(2))

Ea(z) = En(x) + p- (Ei(x) — Eni(z)
p By (z) — Ea(a)
©T (Bi(2) - Bi(@)) + (Ba(e) — Bau(z))
The expected value of both choices at p. is
_ Eu()- B3(2) = Bi(a) - Bau(c)
Eyu(w) = Bou(z) + B3 (2) — Ef(x)

(7)

E.(z)

Now consider the choice at p = p. + 6 where § > 0:

Ei(z) = Eula)+6- (Ei(z) — Fu(z) Q
Fale) = Ba)+6- (B3(s) — Farle) . ()

Since (£3(z)— E2.(z)) > (E}(z)— E1.(z)) and 6 > 0, it must be the case that Ey(z) > Ei(2).
Therefore, Choice 2 is preferred. Similar argument shows that Choice 1 is preferred whenever

< P
O
Letting
a = Ev.(z) — Eu(z) and b = E3(2) - Ef(2)
gives .
Pc = a+ b (10)



Thus, Choice 1 is preferable if
a

a+b

<

and Choice 2 is preferable if

a
a+b’
It ;%5 > 1.0 then Choice 1 is always preferred (no assumption of p is necessary). If 2 < 0.0
then Choice 2 is always preferred. It follows that whenever one EUI is slightly “higher” than
another, i.e.

p >

Ey(z) > Eo(z) and Ej(z) > Ej(z),

then the action that gives rise to it is always preferred.
Returning to the second oil-drilling example (Figure 5), the decision of whether or not
to drill when the test result 1s yellow involves a choice between

No Drill:  E(2) = [-10,000 — 10,000}
Diill: E(z) = [-80,000 40,000] .

By Theorem 2, p. = 0.583, and one should drill only if p > 0.583.
When p > 0.583, the decision as to whether or not to conduct the test involves a clioice
between

No Test: E(z)=[-34,000 35,000]
Test: £(z)=[~9,000 60,000] .

Here, Test is the preferred choice because its EUI is higher.

4 Discussion

The value of the result of an action is frequently measured in money (e.g., in dollars), but
people often exhibit preferences that are not consistent with maximization of expected mon-
etary value. The theory of utility accounts for this behavior by associating for an individual
decision-maker a value (measured in wutiles) with each state s, v = f(s), such that max-
imization of expected utility yields choices consistent with that individual’s behavior [4].
Utility theory can satisfactorily account for a person’s willingness to expose himself to risk
and should be used whenever one’s preferences are not linearly related to value. This atti-
tude toward risk should not be confused with one’s attitude towards ambiguity, which is the
quality that is modeled by p.

4.1 On making assumptions

It is interesting to compare the types of assumptions made in a probabilistic analysis with the
p assumption proposed here for belief functions. When using probability, a maximum entropy
assumption is often made. Sometimes, this assumption is justified, and it should properly be
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considered part of the evidence, not as an assumption. When this is the case, a maximum
entropy belief function can be used as well [2]. At other times, the maximum entropy
assumption is not justified, but is used simply because some assumption must be made, and
maximum entropy has some desirable properties [20]. In these cases, the choice of elements
in the sample space (the set of possibilities) introduces distortion into the expected value
that will result. That is, adding a few more possibilities into the sample space will change the
expected value of the maximum entropy distribution over that samiple space. For example,
if we choose to allow for the possibility of $2 being among the possibilities for the hidden
sector of Carnival Wheel #2, the sample space would be {1,2,5,10,20} instead of {1,5,10,20},
and the expected value of the maximum entropy distribution of that wheel would be $6.16
instead of $6.30. On the other hand, for any choice of p, the evidential expected value using
either of the two preceeding sample spaces would be identically (5.50 + 1.90p) dollars. Of
course, adding possibilities outside the interval [1, 20] would change the evidential expected
value. For example, allowing for the possibility of $50 in the hidden sector would change the
maximum entropy expected value to $7.12 and would change the evidential expected value
to (5.5044.90p) dollars. The point is that both assumptions introduce bias into the decision
criteria. This should not be surprising because both are unjustified assumptions. There is
no basis on which to prefer one over the other; both assumptions are entirely plausible.

Having made this point, there are some consequently weal arguments for recommending
the use of the assumption of the probability of nature’s cooperation p. Because the LUl
spans the range of all expected utilities that could be obtained by adding any assumption
to a probabilistic analysis, there always exists some value of p, 0 < p < 1 that yields the
same expected utility E(z) as a probabilistic analysis. Therefore, the decisions that are
prescribed depend only on one’s ability to estimate p, not on his election to use Equation 3.
Furthermore, the use of a single parameter means that the decision-malker is asked to provide
only one additional piece of information.

The parameter p has been explained as a probability, giving it a formal grounding that
earlier decision schemes for belief functions have lacked. Furthermore, we believe that it is
the probability of a meaningful event. Selecting p = 0 is appropriate when an adversary
controls the situation (as in game playing, for example) or when a decision-maker wishes
only to minimize his expected loss, and is equivalent to the maximin criteria of Wald. An
optimistic decision-maker would prefer to choose p = 1 to maximize his chance of realizing
the greatest possible expected payoff without worrying about what losses might be possible.
Intermediate values of p can be used to compromise between these extremes.

4.2 On the limitations of the approach

Despite the appeal of a computationally eflicient decision analysis procedure for belief func-
tions, there remain some issues that are not addressed. As in classical decision analysis, it
remains necessary to enumerate the potential states of nature and to assign utilities (actually
utility intervals, which should be easier to assign in practice). This task can be overwhelming
when complex scenarios are considered. Furthermore, it should not be forgotten that the
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assignment of a value to p (when it is neceséary) remains an assumption unwarranted by the
evidence at hand, just as maximum entropy or any other assumption is unwarranted when
insufficient information is available.

It is inherent in the methodology described that the determination of what is best or
worst is considered after the decision-maker’s choice is postulated. That is, the reaction of
nature is allowed to depend on the decision that is to be taken. This is sometimes reasonable,
and sometimes not. For example, conducting a regional test market for a new product may
affect the natlional demand by virtue of publicity or increased competition. As a result, there
may be no single underlying probability distribution that can simultaneously give rise to the
expected utilities obtained for each choice. This should not be particularly worrisome as
long as this consideration suits the problem at hand. If not, the expected utility intervals
computed with the method described here may be wider than prescribed by the evidence. In
that case, it is necessary to conduct a more complicated case-based analysis that is analogous
to the linear-programming problems that arise in game theory. See Jafiray (7] for further
discussion of this approach.

4.3 On the automation of decision analysis

A probabilistic analysis of a decision problem (e.g. the second oil-drilling example) follows
the paradigm: assess, assume, combine, decide. An assessment of a probability distribution
is made for each piece of evidence; assumptions are made about the distributions of missing
pieces of evidence; the assumptions and evidence are combined to obtain a distribution
of payoffs, and a decision is made on the basis of the expected utility of the payoff. In
contrast, a belief function analysis follows the paradigm: assess, combine, assume, decide.
An assessment of a belief function is made for each piece of evidence; these pieces of evidence
are then combined to obtain a belief function over the possible payoffs; then an assumption
is made (about the benevolence of nature); and a decision is made using that assumption
and the expected utility interval of the payoffs.

While the same decisions will be reached whether one makes assumptions first and then
combines or combines evidence and then adds those assumptions, the difference in paradigms
has important implications for automating the procedure. First, in some decision problems
the EUI of the top choice will not overlap the EUI of any other choice, i.e. the decision fol-
lows from what is truly known, and in no way depends upon the accuracy of any assumption
that might be made. Using belief functions, the best decision in this case is immediately
determinable without additional assumptions. Because Bayes’ rule requires a prior distri-
bution, this situation cannot be recognized without a more complex sensitivity analysis
when a purely probabilistic representation is used. Second, when an assumption must he
made because intervals do overlap, making it as late as possible allows one to maintain the
assumption-free intermediate calculations for use in other computations. This is not an issue
when the evidence will be used once and discarded, but affords a considerable computational
savings when other decisions must be based on the original evidence plus new evidence as
it comes along. Third, consider what must be computed if one chooses to use a different
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assumption (as needed for sensitivity analysis, for example). In a probabilistic analysis the
assumptions and all evidence must be recombined before a decision can be made because the
assumpliions are needed to combine the evidence. Using belief functions, one need only comn-
bine the new assumption with the already combined evidence before selecting the decision.
This separation of evidence and assumiption is similar in spirit to the distinction between
credal and pignistic beliefs described by Smets [19].

5 Summary

We have proposed a decision analysis methodology for Shafer’s theory of beliel functions.
We started by defining the notion of expected utility interval (EUI) and showed it to prop-
erly bound the expected utility of any probability distribution that could be obtained by
introducing additional assumptions. Because an expected utility interval is often insufficient
for decision-making, we recognize that a point-value must be chosen to compare alternative
choices. We then showed how a linear interpolation of a distinguished value within the EUI
is equivalent to making an assumption of the benevolence or maleficence of nature. Letting
p be the probability that ambiguity will be resolved {avorably, we derived that distinguished
point.

We have also shown how the theory can be used to generalize the decision trees used
in probabilistic decision analysis. These tools allow a decision-maker to defer unwarranted
assumptions until the latest possible moment. In so doing he can sometimes avoid making
any assumptions at all. Otherwise, lie is forced to provide only enough additional information
to allow a clear choice, and has the benefit of all available information to selectively decide
where he would like to make that assumption.

We have implemented the techniques and have used that software to generate the decision
trees shown in the figures in this paper. In addition a new evidential operator for decision-
malking has been added to the repertoire of the evidential reasoning technology developed at
SRI International (see Appendix B). Decision analysis has been incorporated into Gister,”
SRI’s evidential reasoning system which uses the Dempster-Shafer theory of belief functions
as its underlying representation.

What we have described is by no means a full theory of decision-making for belief func-
tions. Rather, we hope it may provide some insight that will someday lead to a better
understanding of decision-making with incomplete information.
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Notation

pol(x) —Probability distribution over sample space @,z € ©
me(A) —Mass function defined over frame of discernment ©, A C

©

Spt(A)—Support: Spt(A) = 2 4,ca me(As)

Pls(A)—Plausibility: Pls(A) =1 — Spt(—A)

E(z) —DExpected value of a random variable whose outcome is
soverned by a probability distribution:

E(z)= )z pe(x)

TeB

—IEvidential expected value — the expected value of a vari-
able governed by a beliel function assuming that any
residual ambiguity will be decided favorably with proba-
bility p:

E(x)=(1-p)-Ez)+p E(z)

E*(z) —Upper bound of expected value:

E*(z)= > sup(4)-me(4:)

A;CO

E.(z) —Lower bound of expected value:

E. (z)= > inf(A:) me(d)

AiCO

EVI —Expected value interval: [E.(z), E*(z)]

EUI —Expected utility interval: Same as EVI, when © is a
frame of utilities

p —The probability that any residual ambiguity will be de-
cided favorably

1 — p —The probability that any residual ambiguity will be de-
cided unfavorably

Pe —The value of p at which one would be indifferent between
two choices
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B Decision-Making with Evidential Reasoning

In this section we reanalyze the second oil-drilling example within the framework of evidential
reasoning. First we review some of the tools of evidential reasoning and then introduce a
decision operator for belief functions hased on the theory described eariier.

In evidential reasoning, domain-specific knowledge is defined in Lerms of compatibility
relations that relate one frame of discernment to another. A compatibility relation simply
describes which elements from the two frames can simultaneously be true. A compatibility
relation @ 4 g between two frames @4 and Op is a set of pairs such that ‘

Q45 C0O4x0p,

where every element of ©, and every element of @p is included in at least one pair.
Evidential reasoning provides a number of formal operations lor assessing evidence, in-
cluding:

e Fusion — to determine a consensus from several bodies of evidence obtained from
independent sources. Fusion is accomplislied through Dempster’s rule of combination:

1
m(A) = o X mb(A)mb(4)) )
Aind =4,

k= Z 7??.19(14;)7??.2@({’13') .
AiNd;=¢
Dempster’s Rule is both commutative and associative (meaning evidence can be fused
in any order) and has the effect of focusing belief on those propositions that are held
In common.

e Translation — to determine the impact of a body of evidence upon elements of a
related frame of discernment. The translation of a belief function from frame ©4 to
frame ©p using the compatibility relation ©4 g is defined by

meg(B;) = > mae, (Ax) , (12).
Camp{Ak) = B;
A, C 04, B;COp

where CAHB(A,L-) = {bjl(a;,bj) e @A,B,a; c Ak}.

Several other evidential operations have been defined and are described elsewhere [12].

We now describe a new evidential operation for making decisions. Its operation is anal-
ogous to the evaluation of a choice node in probabilistic decision analysis, except that it is
defined for belief functions and substitutes the notion of evidential expected utility for the
probabilistic expected utility.
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s Decision — to choose an action based on a body of evidence representing the states
of nature believed at the time of the decision and a body of evidence representing the
beliefs resulting from any particular decision. Let me, represent the beliefs in frame
O 4 about the state of nature at the Lime a decision is to be made. Let frame @p he
the possible actions that can be taken. Let meg,(U|A, D) represent the beliefs over
the utility frame Oy that result from making decision I when A is true. The mass
function representing the best policy is

me(A) if E(me,(U|A, D)) > E(me,(U|A, D;)),
me,xop (A4, D) = VD €Op, Iy # D (13)

] otherwise .

Ties are broken arbitrarily. The optimal policy computed by the decision node is given
by the focal elements (A, D) in me, xe,(A, Do) such that if A is the most precise
statement known to be true, then the best decision is D).

m(Result|Test?) m(Structure|Test?,Result)  m(Capacity|Structure)
\

Tast? Drin? Fusion

TRANSLATE

Figure 9: Evidential Decision Analysis of the Second Qil Drilling Example

Within Gister, a decision node is represented by a square. An evidence node leading into
the decision node represents what would be known at the time a decision is to be made. The
output of the decision node is the optimal policy (as defined ‘above}, and is represented as
a belief function over the cross-product frame of states of nature and alternative decisions
(@4 x ©p). That belief function is then available to other evidential reasoning operations:
it may be discounted, translated to a dependent frame, fused with additional evidence that
would only be available after the decision is taken, etc. With this definition, a decision node
represents a primitive operation that can be included in the data flow represented by an
analysis. Figure 9 illustrates the analysis that was constructed for representing the second
oil-drilling example within Gister.

The optimal policies computed by the Test? and Drill? nodes are summarized below
(assuming that p = 0.5). The result is identical to the strategy computed using a decision
tree as can be verified by comparison with IFigure 7.
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Decision Test?: Expected value: 27500

1.0 = m({ No Test Test ))
E(x) 27500 EVI =
E(x) 500 EVI

I

Decision Drill?: Expected value:

0.50 = m{( Test & Red ))
E{x) = -10000 EVI
E(x) = -80000 EVI

0.20 = m(( Test & Yellow ))
E(x) = -10000 EVI
E(x) = 20000 ) EVI

I

0.30 = m(( Test & Green ))
E{x) = 115000 EVI
E{x) = -10000 EVI
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Rho=0.5

-- Test

[ 5000 50000] Test

[ -34000 35000] No Test
27500 Rho=0.5

-- No Drill

[ -10000 -10000] No Drill

[ -80000 -80000] Drill

-- Drill

[ -10000 -10000] No Drill

[ -80000 40000] No Drill

-- Drill

[ 40000 190000] Drill

[ -10000 -10000] No Drill



